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ABSTRACT

Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a

compressible lubricant (gas) is presented. A three wave, waved journal bearing geometry is used to show

the geometry of this concept. The performance of generic waved bearings having either three, four, six,

or eight waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of

beating load capacity, while the dynamic performance is discussed in terms of dynamic coefficients and
fluid film stability.
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It was found that the bearing wave amplitude has an important influence on both steady-state and dynamic
performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load

capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases. Also, the waved
bearing becomes more stable as the wave amplitude increases. In addition, increasing the number of waves

reduces the waved bearing's sensitivity to the direction of the applied load relative to the wave. However,
the range in which the bearing performance can be varied decreases as the number of waves increases.

Therefore, both the number and the amplitude of the waves must be properly selected to optimize the

waved bearing design for a specific application. It is concluded that the, stiffness of an air bearing, due

to hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry
with a wave amplitude approximately half of the bearing radial clearance.

NOMENCLATURE

Bc = symbolic damping coefficient used in stability analysis

B_j (i = x,y; j = x,y) = dimensionless dynamic damping coefficient
C = journal bearing radial clearance, m
D = journal bearing diameter, m

e = eccentricity, m

e,,, =wave's amplitude, m

F = F/(p.LD) dimensionless load capacity

F" = load capacity, N (the resulting force of the pressure distribution)
f = vii) whirl frequency ratio

f0 = u0/fl unstable whirl frequency ratio
h = hlC dimensionless film thickness

= film thickness, m

i = C---l, the imaginary unit

_Ku (i =x,y; j = x,y) = dynamic stiffness coefficient, N/m (N/#m)
Kij (i =x,y; j = x,y) = dimensionless dynamic stiffness coefficient

Ko K,:0 = symbolic stiffness coefficient used in stability analysis
L = bearing length, m

M = rotor mass allocated to one bearing; for a symmetric rotor M is half of the rotor mass, Kg

1_t_ = corresponding rotor mass, allocated to one bearing, required to make the bearing unstable, Kg
(critical mass)

Mo = M¢(v02C)/(p, LD) dimensionless critical mass
n_ = number of waves
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O = center of the bearing

OI = center of the shaft

p = dimensionless pressure

= pressure, Pa
p, = ambient pressure, Pa

P0 = steady state component of the pressure p
Pt, P2 - perturbation components of pressure p

R = journal bearing radius, m

t = time, s

W = bearing load, N
x -- x-direction (direction of the load on bearing)

y = y-direction perpendicular to x

xL.3 = fluid film coordinates
z = axial coordinate parallel to rotor axis

Z_ (i --- x.y; i = x,y) = impedance for translatory motion
= angle between the starting point of the wave and the line of centers, dgrs

"t = wave position angle = angle between the starting point of the wave and the direction of the load. dgrs

e ffi e/C, eccentricity ratio

_w --- ew/C, wave amplitude ratio

e0 = eccentricity ratio under static load

el = dimensionless radial whirl amplitude

e0qPt -- dimensionless tangential whirl amplitude
0 = angular coordinate originating at the line of centers

A = (6#f_)(R/C):/p,, bearing number

# = dynamic viscosity, Nsm "2
u = whirl frequency, rad/s

v0 = unstable whirl frequency, rad/s
r = dimensionless time

= rotation frequency, rad/s

INTRODUCTION

Hydrodynamic circular bearings can become unstable, generating a whirl motion whose frequency

approximates half the rotation frequency of the shaft. However, hydrodynamic bearings can be made stable

by changing the circular fluid film geometry to incorporate recesses, holes, steps, or lobes, although, the.so

changes reduce the beating's load capacity.

Recently, a new alternative to the plain circular hydrodynamic beating, a waved journal bearing, was
conceived [1]. The waved journal bearing features a waved inner bearing diameter. The numerical model

of the waved journal bearing has shown significantly increased steady-state (stiffness) and dynamic (stability

and dynamic coefficients) performance as compared to a circular bearing's performance.

The waved beating concept is shown in figure 1 for a three wave journal bearing geometry. However, the

waved beating can have two, three, four, or more waves. Both three and four wave journal bearings are

analyzed in order to show the influence of the number of waves. In addition, a truly circular bearing is

analyzed and compared to a waved bearing, showing the performance improvements gained by the waved

bearing. A compressible fluid (gas) is assumed as the lubricant. Both steady-state and dynamic bearing

performance are predicted using a numerical code based on a perturbation mlution of the complex form
of the Reynolds equation 12, 31. Waved bearing performance is computed assuming atmospheric air as the

lubricant. The steady-state performance is di,_ussed in terms of bearing load capacity, while the dynamic

performance is discussed in terms of bearing stability and bearing dynamic coefficients. Both the wave

amplitude ratio and the number of waves influence the waved journal bearing performance. Therefore, a
waved bearing configuration (the number of waves and the wave anaplitude) can be optimized for a specific
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application.The type of load applied to the bearing (major side load or dynamic rotating load) and the

bearing dynamic coefficient values required to control the rotor-bearing system behavior are important.

Both the rotor-bearing system critical speed and amplitude can be changed by changing the bearing dynamic
coefficients via the wave amplitude.

WAVED BEARING CONCEPT

A three wave, waved journal bearing geometry is shown in figure 1. The mean diameter of the waved
bearing (the diameter of the mean circle of the

waves) is also the diameter of the truly circular

bearing to which that the waved bearing is
compared. The radial clearance, C, is the

difference between the mean circle radius and the

radius, R, of the shaft. The clearance, C, and the

wave's amplitude, e,_, are greatly exaggerated in
figure 1 so that the concept may be visualized.

The radial clearance, C, is typically less than one

thousandth of the journal radius, R, and the wave
amplitude, e,,, is typically a fraction, 0.2 - 0.6

typically, of the radial clearance, C. The waved

bearing performance depends on the position of

the waves relative to the direction of the applied

load (W). This position can be defined by the

wave position angle, 7, which is the angle between
the starting point of the waves and the direction

I ARTING POIN f or WAVI-

WAV[ I') I,_I AI,'INL, PI._OI II I .-.-.- ----.. I _/

li" "i%\ \\ "

. ./,1,
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_EAN CIRCLE OF THE WAVES OR TRULY CIRCULAR BEARING PROFILE

Fig. 1 Three wave journal bearing geometry.

of the applied load. The wave anaplitude, %, the number of waves, as well as the wave position angle, 7,
are the basic design parameters of the waved journal bearing. The waved bearing performance is similar
with the shaft rotating in either direction.

Any number of waves can be selected. In the present work the data for a three, four, six, and eight waves,
waved journal bearing are compared to the data for a truly circular bearing.

ANALYSIS

When load, W (Fig. 1), is applied to the shaft, the shaft must find an equilibrium position at an

eccentricity, e, such that the load capacity of the bearing, F, balances the applied load, W (Fig. I). The
load capacity, F, is a result of the pressure generated in the fluid film owing to both the rotation of the

shaft and the variation in fluid film thickness along the circumference. This variation can be defined by:

]5 = C + e cos 0 + ew cos(nw( 0 + a)) (1)

where n_ is the number of waves, o_ is the angle between the starting point of the wave and the line of
centers (Fig. 1), and 8 is the angular coordinate starting from the line of centers.

The pressure generated in the fluid can be calculated by integrating the Reynolds equation. Assuming a
compressible lubricant with isothermal behavior, the Reynolds equation has the following dimensionlessform [4, 5, 6]:
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÷ -'_z(h3"_Z)

+ i4fA a(ph------!
a_

= 2A a (ph)
a8

+

(2)

where:

p _

O x! x3
p, : z : (3)

_ = i vt, (i = ¢rc"-f)

Pa

The film thickness, h, is made dimensionless by dividing equation 1 by the radial clearance, C.

The bearing number, A, (Eq. 4) is the main working parameter of the bearing. It reflects dynamic viscosity

of the fluid, #, the ambient operating pressure, p,, the rotational speed of the shaft, f_, and the bearing

main geometry parameter, (R/C).

Bearing Steady-State and Dynamic Performance:

Both the steady-state and dynamic performance of the bearing can be determined using the small

perturbation technique of the complex form of the Reynolds equation (Eq. 7) [2, 3]. Expanded in a Taylor

series truncated to the first derivatives, the pressure can be written as:

P = Po + e! exp(_) Pl + eo(Pl exp(x) P2 (5)

where P0 is the steady-state component and Pt and P2 are the dynamic components of the pressure. Ea¢h

component can be calculated by numerically integrating the corresponding differential equation derived

from the Reynolds equation (Eq. 2), [2, 3].

The bearing steady-state and dynamic characteristics can be obtained by integrating the pressure

components, P0, Pt, and p:, over the whole bearing fluid film. The steady-state load capacity, F, is
calculated by integrating Po, while both the dynamic stiffness, K_j, and damping, Bii (i = x,y; j = x,y),

coefficients are calculated by integrating the dynamic pressure components, p_ and P2, respectively.

Under dynamic conditions, the journal (shaft) center whirls in an orbit around its static equilibrium

position. The corresponding bearing dynamic reaction force is actually a nonlinear function of the whirl

amplitude and depends implicitly on time. In a thorough analysis it is necessary to consider the rotor and
the bearing simultaneously as is done, for example, in reference 7. In most practical situations, the

amplitude of the shaft whirl is, of necessity, rather small. In these cases, a linearization of the bearing

reaction is permissible 12]. Then it becomes possible to treat the bearing _parately and represent the

bearing reaction force components by means of bearing dynamic coefficients:
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B dx_ dy
Fy = -Ky_ - yx dt Kyyy - Byy dC

(6)

Equation 6 is only valid when the journal motion is harmonic, and

x = _exp(ivc) = _exp(_)

y = yexp(ivt) = _exp(_)

The

where:

equation 6 can be written in complex form as:

F_ = -Z,_x - Z_y

Fy = -Zy_x - Z_y

(7)

(8)

z_ : f_ + i v B_._ (g)

i = x,y; j = x,y

are the bearing impedance coefficients. For a given bearing geometry, the dynamic coefficients are

functions of the static load on the bearing and the rotor speed. The dynamic coefficients also depend on

the whirl frequency, and they are actually impedances of the gas film. Note, also, that the x-axis (Fig. 1)
was chosen along the direction of the steady-state load.

It is also important to note that the bearing's dynamic reaction force components, Fx, and Fy, are functions
of the bearing dynamic coefficients, as equation 6 shows. Consequently, these bearing dynamic coefficients

influence the rotor-bearing system dynamic behavior. It will be shown that these coefficients depend on

the wave amplitude ratio. This means that the rotor-bearing system behavior could be controlled by

varying the bearing wave amplitude ratio, ew.

Bearing Stability:

In a bearing stability calculation, it is necessary to evaluate the bearing coefficients over a frequency range,

usually around one half of the rotating frequency. On this basis, a stability analysis can be performed in

order to calculate the critical mass. The critical mass, M, is used to help determine whether the bearing

will run free of "half frequency whirl" instability [2, 3]. Half frequency whirl is an instability of the fluid

lubricant film of the bearing. It appears as a whirling, orbiting motion of the shaft and its frequency or

speed, v0, is often close to one-half the running frequency or shaft speed. This phenomenon is more likely

to occur when the shaft center is close to the center of the bearing (near zero eccentricity). This

frequency,v0, can be nmch lower than one-half of the running frequency when the value of eccentricity is

large [8]. To derive the equation for critical mass, in a simple manner, the rotor is considered rigid and

symmetrical, and supported by two identical bearings [2, 3]. This means that each beating carries one-half

of the rotor mass. If M is the rotor mass supported by the each bearing (M -- 1/2 of the rotor mass) and

the beating is represented by its four impedance coefficients, _j (i = x,y; j = x,y), the motion equation
can be written as:
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The threshold of instability occurs when the determinant of the matrix is zero. Noting:

Z = Kc + i v B c, Kc = My 2

the determinant equation can be solved to get:

(1o)

(11)

11 1
(z= + -z= . (z=- .

(12)

For stability calculations, only the solution with a negative sign in front of the square root proves to be of

interest [2]. At the threshold of instability, Z must be real. The imaginary part of Z can be evaluated over

a range of frequencies to find the frequency value, v o, causing the imaginary part of Z to be zero. The

corresponding mass is the mass required to make the bearing unstable under the selected working conditions
and is:

Kc0

Mc - 2 (13)
V o

If the calculated critical mass for the be.aring (Eq. 13) is equal to or greater than one-half the actual rotor

mass, then half-frequency whirl instability is likely to occur.

RESULTS AND DISCUSSION

In the present work, a generic bearing is used to better understand the waved bearing performance. The

selected generic journal bearing has a mean diameter of 200 mm, a length of 100 mm, and a radial

clearance of 0.080 mm. The bearing performance was determined at 5,000, 20,000, and 100,000 RPM (the

corresponding bearing number, A, are 0.89, 3.56, and 17.38, respectively). However, the data of 20,000

RPM running regime is shown in here. The bearing is lubricated by atmospheric air. Generic bearings

having three, four, six, and eight waves are considered; for each bearing the wave amplitude ratio, _, =

eJC, varies from 0 (truly circular journal beating) to 0.5. Two eccentricity ratios (_ = e/C = 0.2 and

0.4) are specified as input data to the numerical code. To evaluate the influence of the wave position angle,

3', on the beating performance, the three, four, six and eight wave bearings are rotated over a range of

angles from 0 to 120, 90, 60, and 45 degrees, respectively.

Bearing Load Capacity:

The waved journal bearing load capacity at each of the selected eccentricity ratios is strongly influenced

by the wave amplitude ratio (Fig. 2). This remark is valid for all analyzed waved journal bearings.

However, the three wave journal beating's load capacity varies over a greater range (from 169 to 395 N

at 0.2 eccentricity ratio, Fig. 2a, and from 380 to 1750 N at 0.4 eccentricity ratio, Fig. 2e), then do the

other waved bearings( e.g. four waves from 169 to 315 N, Fig. 2b, and from 380 to 1275 N, Fig. 2f; the

six waves from 169 to 255 N, Fig. 2c, and from 380 to 875 N, Fig. 2g; the eight waves from 169 to 223

N, Fig. 2d, and from 380 to 725 N, Fig. 2h; at lx_th 0.2 and 0.4 eccentricity ratio, respectively).

Thus, a low number of waves such as three waves should be selected if the predominant load on the

bearing is a steady-state side load and the bearing (waves) position can be properly fixed. As a direct
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result, the influence of the wave amplitude on bearing performance can be maximized.Fig. 2 also shows

that bearing load capacities are less sensitive to the orientation of applied load to the waves as the number

of waves increase. Consequently, a large number of waves (four or more waves) is required if the direction

of the steady-state load varies or a predominant rotating dynamic load is applied to the bearing.

Bearing Dynamic Coefficients:

Only the direct dynamic stiffness coefficient, I_, of all analyzed bearings is strongly influenced by the
wave amplitude ratio while the rest of the waved bearing dynamic coefficients are almost constant with

respect to wave amplitude ratio. The direct dynamic stiffness, fr_, significantly increases with increasing
wave amplitude ratio, especially at large amplitude ratios. Fig. 3 shows that the direct dynamic stiffness,
I_, could be up to 10 times greater than the truly circular bearing stiffness in the case of a three wave

bearing with a wave amplitude ratio of 0.5, at a large eccentricity ratio such as 0.4. This effect decreases

if the number of waves increase (e.g. the direct dynamic stiffness of an eight wave bearing could be only

up to 4 times greater than the truly circular bearing). The remaining dynamic stiffness coefficients (Fig.
3) as well as the dynamic damping coefficients are less sensitive to the wave amplitude ratio than the direct
dynamic stiffness coefficient. This physically explains the stabilizing effect of the waves. The shaft reaction

forces align more closely with the applied load and the effects of the cross-coupling, destabilized forces
become less important as the wave amplitude increases.

Fluid Film Bearing Stability:

The fluid film stability of the waved journal beating will be discussed in terms of "critical mass" (Eq. 13).

The numerical results show that the critical mass of all analyzed bearings is dependent on the wave

amplitude ratio (Fig. 4). All waved bearings are unconditionally stable at large wave amplitude ratios (as

0.5) for an eccentricity ratio of 0.4. However, Fig. 4 shows also that the stability of a wave bearing with

fewer waves is enhanced, exceeding the stability of a wave bearing with a large number of waves, if the

orientation between the wave position and the applied load (the wave position angle) is properly selected.
In addition, the waved bearing critical mass, as the other bearing performance, is less sensitive to the wave
position angle, -y if the number of waves is increased.

Actively Controlled Waved Bearing:

The rotor-bearing system behavior can be controlled by the wave amplitude ratio. The wave amplitude ratio

influences the wave beating dynamic coefficients, especially the direct stiffness. As a direct result, the

rotor-bearing system critical speed can be changed by changing the bearing stiffness via the wave

amplitude. The dynamic forces (Eq. 6) that the bearing applies to the rotor also depend on the wave

amplitude ratio. These bearing dynamic forces combined with rotor dynamic forces will determine the

rotor-bearing system dynamic behavior. Consequently, the rotor-bearing system dynamics can potentially
be actively controlled by actively controlling the wave amplitude of bearings which support the rotor.

Note: This analysis shows that a six or eight wave bearing geometry could increase the hydrodynamic
effect and the bearing steady-state and dynamic performance is improved due to this effect. Thus, the

bearing stiffness could be up to 4 or 5 times greater and is stable. Using six to eight waves the bearing

reacts almost uniformly as the applied load changes, and as a consequence, the position of the beating is
not critical. However, the wave amplitude ratio must be greater than 0.2 to allow the bearing performance

to be greater than that of the truly circular bearing. It is important to note that the manufacturing tolerance

for the wave amplitude are critical in establishing the performance of wave beatings for any application,

although this analysis was only done for a compressible lubricant. However, if due to manufacturing
tolerances the wave amplitude ratio decrease below 0.2 the bearing performance can become less than that
of the truly circular bearing.
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SUMMARY OF RESULTS

An analysis was performed to demonstrate the performance improvements achieved by using a waved

bearing concept. The waved bearing concept was depicted using a three wave journal bearing geometry.

The performance of three, four, six, and eight wave journal bearings operating with air was numerically

predicted a,,!d discussed. The main conclusions are:

1. The bearing wave amplitude has an important influence on both steady-state (load capacity) and dynamic

performance (fluid film bearing stability and dynamic coefficients) of the waved journal beating. Thus, the

waved beating load capacity could be from 2 to more than 4 times greater than the load capacity of a truly

circular beating, the direct dynamic stiffness could be increased from 4 to 10 times, and the bearing could

be turned into an unconditionally stable beating.

2. The waved bearing is less sensitive to the direction of the applied load relative to waves if a greater
number of waves is used However, the range over which the bearing performance can be varied decreases

as the number of waves increases. Therefore, the actual number of waves must be selected based on the

actual rotor-bearing system particularities to optimize the beating.

3. Stiffness of any air journal beatings, due to hydrodynamic effect, could be doubled and made to run

stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing
radial clearance. However, a small wave amplitude, less than 0.2 of the bearing radial clearance, the

bearing performance can become less than that of the truly circular bearing, especially if the position of
a three or four wave, bearing against the applied load is bad selected.
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